

Air to water heat pumps

HYDRA

HYDRA heat pump units are particularly suitable for applications with radiant floor heating systems or for low temperature applications such as fancoils, thermoventilation units and air handling units, appropriately sized for flow temperature of max 50°C. All versions are equipped with EC silent axial fans and with Twin Rotary inverter compressors that allow complete management of the power of each individual component. In fact, compressor, fan and circulators are regulated in each instant by a control unit based on programs developed internally. It has been designed to be immediately usable and

intuitive; it can be integrated in many system configurations. HYDRA units have a structure in hot-dip galvanised steel with powder paint finish highly weather-resistant. They are characterized by a high efficiency and by the integrated management of the circulator, which allows the production of high temperature water with a three-way deviator valve on a boiler and the possibility of controlling an emergency electric heater or, alternatively, the integrated management of a circulator and exchanger dedicated to the production of hot domestic water.

ALL-IN-ONE

Hydra heat pumps take care about winter heating, summer cooling, and domestic hot water. The range includes 6 units with heating capacity from 8 kW to 30 kW. The range covers most residential heating and cooling requirements: from flats to villas.

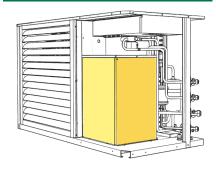
FUNCTIONING

Heat Pumps take heat from an outdoor cold ambient to transfer it to an indoor ambient, further heating it up. When Heat Pumps are activated in reversed cycle, this allows cooling of indoor spaces in summer time.

Electronic control of system delivery temperature through climatic curve.

SIMULTANEOUS DOMESTIC HOT WATER AND HEATING OR COOLING WITH NO NEED OF ELECTRICAL HEATER

4 pipes units can manage high and low temperature circuits at the same time. In summer mode operation the high temperature exchanger will work as cooler, improving the overall yield and producing hot water recovering energy that would otherwise not be used.


HUGE AMOUNTS OF FREE DOMESTIC HOT WATER IN SUMMER DURING COOLING OF THE HOUSE - HIGH COMFORT

HIGHER TEMPERATURE DOMESTIC HOT WATER DURING WINTER REDUCING **ENERGY BILLS**

COMPRESSOR SOUND-BLOCK

REDUCING 5 dB(A) THANKS TO THE SPECIAL COMPRESSOR INSULATION **ENGINEERED BY THERMICS**

A low noise level is ensured by a smart control system that regulates the speed of the compressor and the fan. Anti-vibration supports are fitted to the compressor and anti-noise multi-layer insulation is implemented.

QUIET MODE LOW ENERGY BILLS

TWIN ROTARY INVERTER TECHNOLOGY

POWER REGULATION

Through the use of Twin Rotary Inverter technology Hydra is able to regulate the unit power according to the real needs. This modulation also involves fan and circulators to achieve the highest efficiency.

HIGH EFFICIENCY

EASY-WEB

EASY INTERNET WEB SERVER MONITORING AVAILABLE FOR ALL UNITS

The control unit is made by Evco and can be combined with a highly intuitive touch-screen control with which all operating parameters as well as set points and usage settings can be controlled. Versatile and intuitive controller based on programs developed internally.

NO MORE WORRIES ABOUT AFTER SALES AND MAINTENANCE

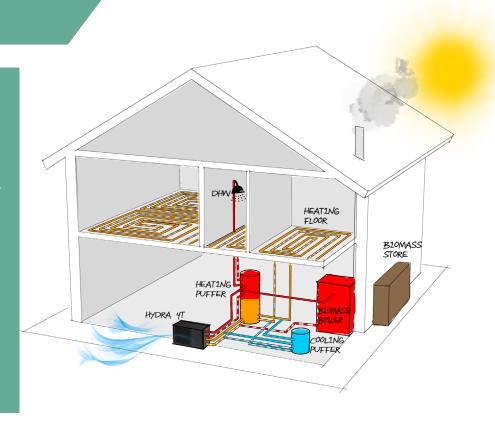
PREDICTIVE MAINTENANCE POSSIBLE

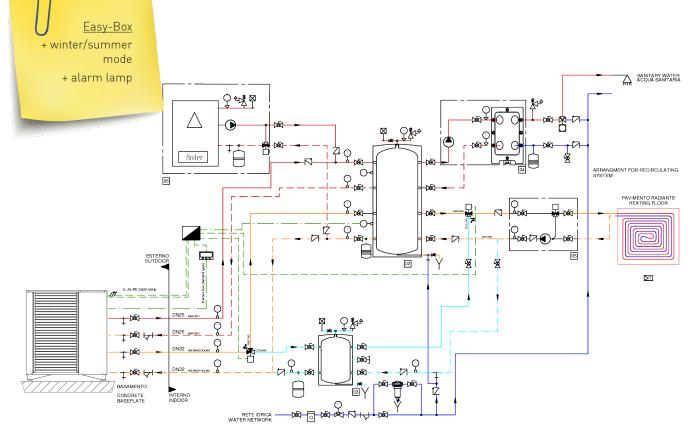
ALLOWS THE HP TO ACTIVATE TWO DIFFERENT DEFROST SYSTEMS, HOT GAS OR REVERSING VALVE

Thermics developed a unique multistage defrosting system that activated different energy levels according to load and external conditions. Light and energy-efficient defrosting is made when HP works for low-demanding houses with moderate weather conditions.

LESS AND LIGHTER DEFROSTING CYCLES WILL GIVE LOWER ENERGY CONSUMPTION

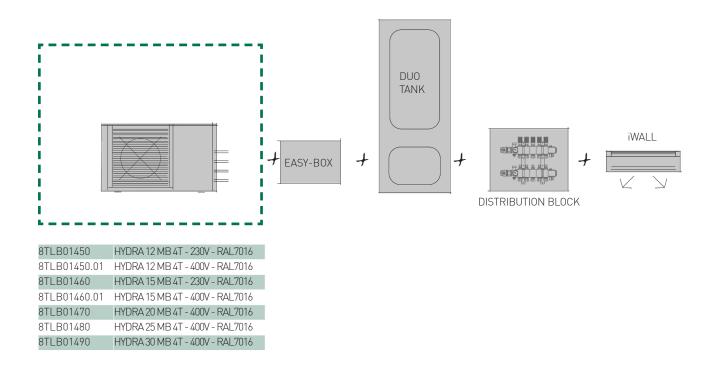
VILLA HYBRID

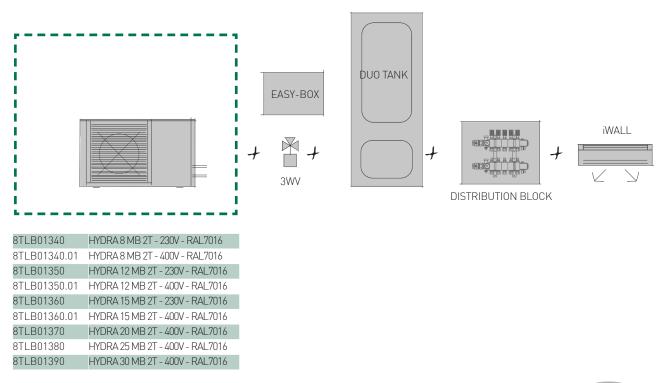

Luxury applications, where multiple renewable energies come together.

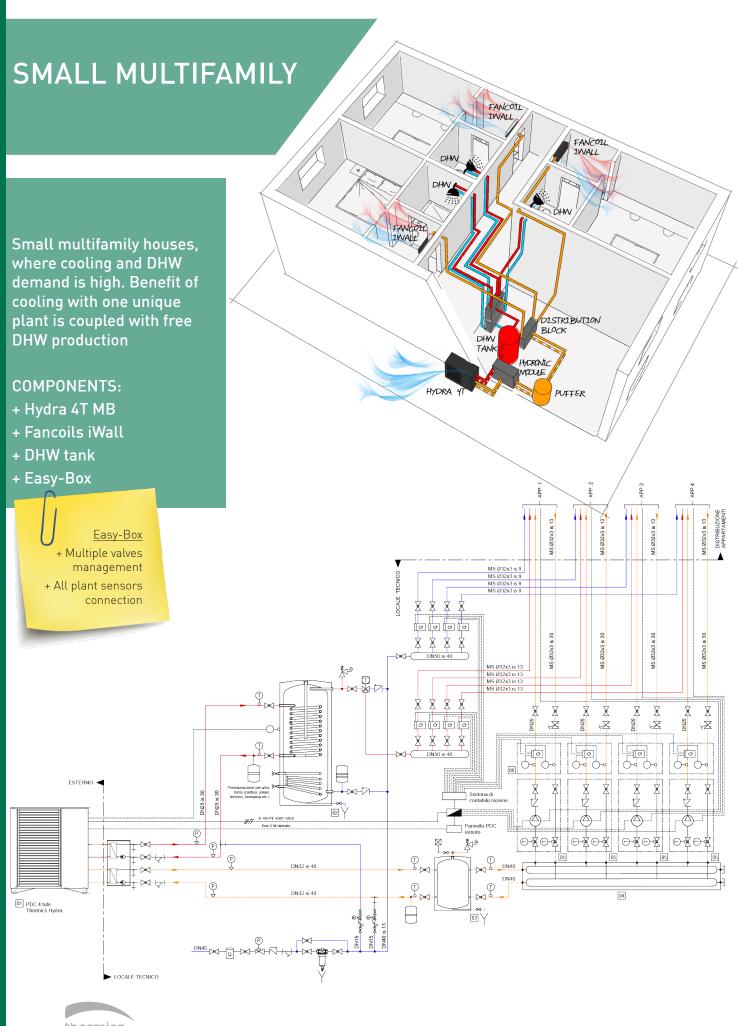

Monoblock Hydra is the best option to combine with solar thermal and biomass. Easy Box allows a quick and safe installation with simple management for

COMPONENTS:

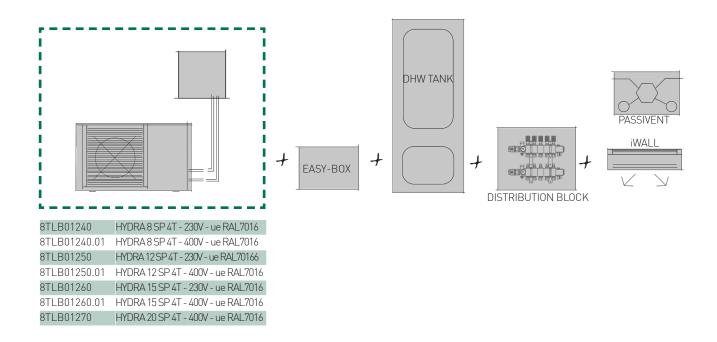
complex plants.


- + Hydra 4t MB
- + Biomass boiler or solar
- + Duo-tank
- + Easy-Box

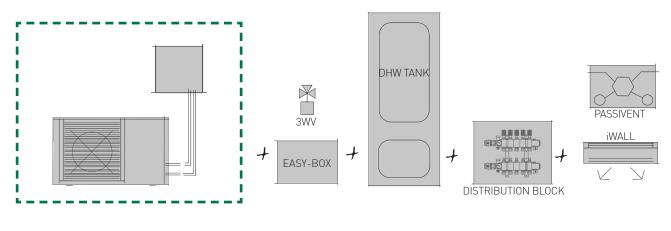




HYDRA MONOBLOCK 4 PIPES

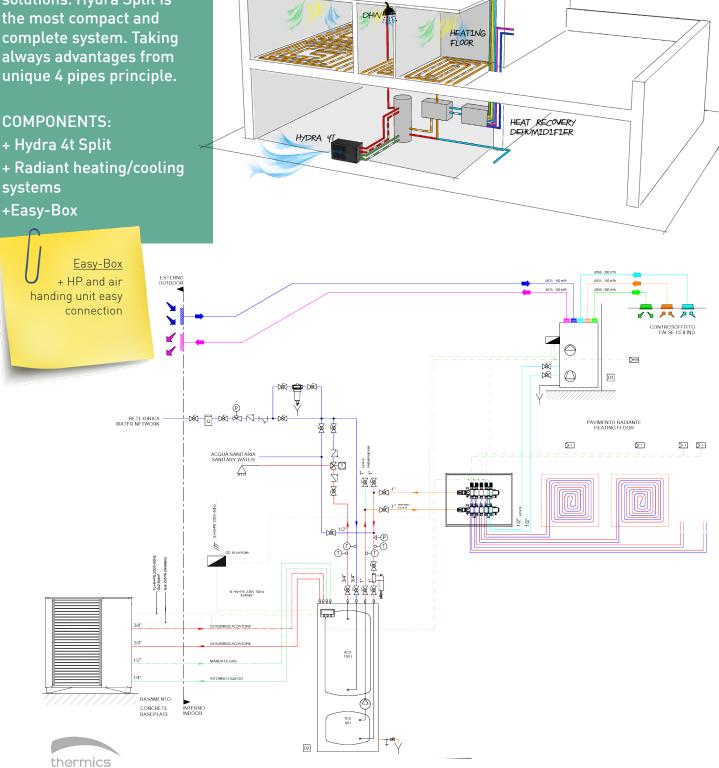


HYDRA MONOBLOCK 2 PIPES

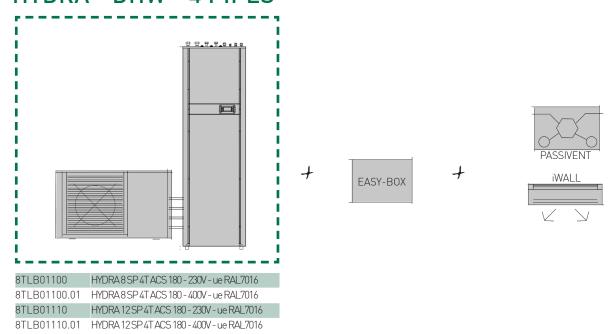


HYDRA SPLIT- 4 PIPES

HYDRA SPLIT- 2 PIPES



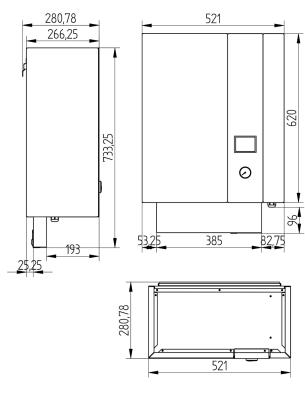
8TLB01140	HYDRA 8 SP 2T - 230V - ue RAL7016
8TLB01140.01	HYDRA 8 SP 2T - 400V - ue RAL7016
8TLB01150	HYDRA 12 SP 2T - 230V - ue RAL7016
8TLB01150.01	HYDRA 12 SP 2T - 400V - ue RAL7016
8TLB01160	HYDRA 15 SP 2T - 230V - ue RAL7016
8TLB01160.01	HYDRA 15 SP 2T - 400V - ue RAL7016
8TLB01170	HYDRA 20 SP 2T - 400V - ue RAL7016



VILLA ALL ELECTRIC

New big flats and/or villas going for all-electric solutions. Hydra Split is the most compact and complete system. Taking always advantages from

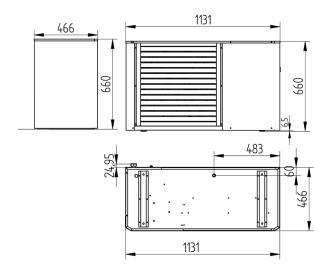
HYDRA - DHW - 4 PIPES

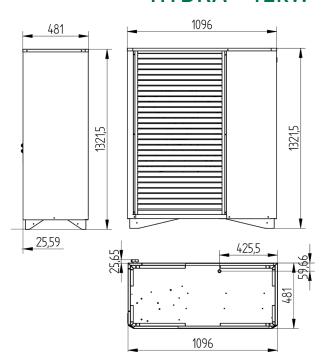


DIMENSIONS

HYDRA -8/12kW - SPLIT

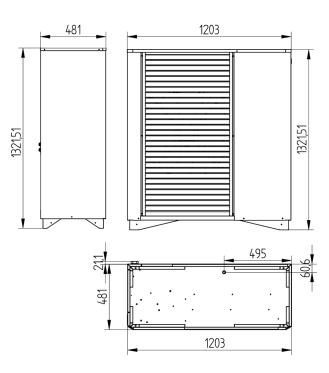
266,25 289,78 266,25 289,78

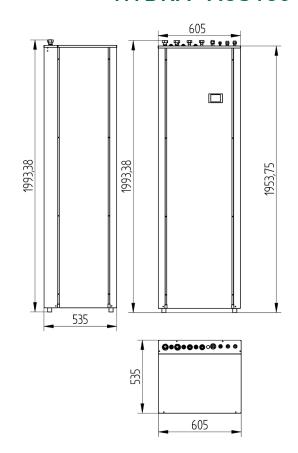

HYDRA - 20kW - SPLIT



DIMENSIONS

HYDRA - 8kW




HYDRA - 12kW

HYDRA- ACS180

HYDRA - 15/20kW

TECHNICAL SPECIFICATIONS

MODE Ava	tal electrical consumption	100% 66% 33% 100% 100%	kW kW kW	8,41 5,23	12,32	14.87	19.03	24.64	31.88
Co Tot CO He Wa	ompressor electrical consumption tal electrical consumption	33% 100%		5,23	E 50			24,04	31,88
Co Tot CO He Wa	ompressor electrical consumption tal electrical consumption	33% 100%	kW		7,72	9,77	11,92	16,12	20,86
™ Tot CO V He Wa	tal electrical consumption DP			2,45	3,74	4,67	5,77	7,57	9,80
Wa)P	100%	kW	1,63	2,51	2,93	3,74	4,86	6,34
Wa			kW	1,77	2,77	3,27	4,18	5,22	6,86
Wa	eating plant			4,75	4,44	4,80	4,55	4,72	4,65
HOOM Cir	ater mass flow	m³/h		1,50	2,12	2,56	3,27	4,24	5,48
OCir	ailable head	mca		4,50	3,00	4,60	4,30	3,50	7,50
Σ	rculation pump el. consumption	kW		0,06	0,06	0,14	0,14	0,14	0,30
01		100%	kW	8,19	11,91	14,27	18,39	23,89	30,92
出 He	eating capacity	66%	kW	5,07	7,42	9,41	11,52	15,57	20,16
Ĭ 10		33%	kW	2,37	3,59	4,54	5,58	7,26	9,39
NIM CO	empressor electrical consumption		kW	2,04	3,07	3,60	4,55	6,00	7,82
> \ge \text{Tot}	tal electrical consumption	100%	kW	2,18	3,33	3,94	4,99	6,36	8,34
				3,75	3,57	3,62	3,69	3,75	3,71
	eating plant	2.41		4 / 4	0.05	0.45	0.47		F 00
	ater mass flow	m³/h		1,41	2,05	2,45	3,16	4,11	5,32
	ailable head	mca		5,50	4,00	5,60	5,30	4,50	8,50
PS Co	ondition A7/W50								
A7/W50 Co He	eating capacity	kW		8,07	11,67	13,88	18,05	23,49	30,41
≥ Pla	ant mass flow	m3/h		1,39	2,01	2,39	3,10	4,04	5,23
Ava	ailable head	mca		3,50	2,70	3,10	3,00	3,80	3,50
		100%	kW	10,76	15,64	18,61	24,15	31,30	40,63
Co	poling capacity	66%	kW	10,76	9,87	12,16	15,24	20,62	26,91
∞		33%	kW	3,26	4,83	5,70	7,58	9,82	12,82
		100%	kW	1,83	2,58	3,31	4,14	5,33	6,95
\[\frac{1}{2} \]	tal electrical consumption	100%	kW	1,97 5,47	2,84	3,65	4,58	5,69	7,47
A33				5,4/	5,50	5,10	5,28	5,47	5,44
SUMMER MODE 7 7 8 8 A3 He H	eating plant	O /I-		1.05	0.70	2.20	/ 15	F 00	/ 00
≥ vva	ater mass flow railable head	m3/h		1,85 4.00	2,69 2,80	3,20 4.00	4,15 3.80	5,38 2.00	6,99 5.30
⊥ AVa	railable nead	mca 100%	kW	7,54	10,90	12,83	16,89	24,07	
Σ	alina assasitu	66%	kW	4.39	6.33	6.33	6.33	6.33	28,41 6.33
≥ C0	poling capacity	33%	kW	2.06	3.05	3.05	3.05	3.05	3.05
SIC	ompressor electrical consumption		kW	1.85	2.74	3.29	4.20	5.47	7.14
≥ Co	tal electrical consumption	100%	kW	1,99	3,07	3,63	4,64	5,83	7,14
S EE	ompressor electrical consumption tal electrical consumption ER	100 /0	KVV	3.79	3,56	3,53	3,64	4.13	3.71
He	eating plant			5,77	5,50	3,33	5,04	4,10	5,71
	ater mass flow	m3/h		1,30	1,89	2,21	2.91	4,14	4,89
	ailable head	mca		4.3	3.2	4.7	6.0	3.5	8.5
	ompressor type	IIICG		4,0	0,2	Twin Rotary	0,0	0,0	0,0
	umber of compressors	n°	1	1	1	1	1	1	
Re	efrigerant type					R410a			
	efrigerant charge	Ka		2,2	4,65	6,36	6,6	10,7	11
	ins	Kg n°		1	1	1	1	2	2
	r flow	m3/h		4000	5500	7800	8700	10000	13000
	railable head	Pa		8,00	16,00	25,50	10,00	9,81	4,90
	ower consumption	kW		0,08	0,20	0,20	0,30	0,22	0,22
	ower supply	V/Ph/H	lz	230-50	230-50	230-50	400-3-50	400-3-50	400-3-50
Hy	draulic connections diameters	inches		1"	1"	1"1/4	1"1/4	1"1/2	1"1/2
So	ound pressure 1m far	dB(A)		57	60	61	63	61	62
	mensions	LxHx	Р	1130x655x500	1130x1320x500	1530x1320x500	1530x1320x500	1800x1680x600	1800x1680x600
Un	nits weight	Kg		140	215	247	257	329	349

Working conditions according to standard EN 14511:	A7/W35		
Internal circuit: radiant system	°C	30/35	In-Out
External circuit: external air 7°C with 85% U.R.	°C	30/35	In-Out
Working conditions according to standard EN 14511	A7/W45		
Internal circuit: radiant system	°C	40/45	In-Out
External circuit: external air 7°C with 85% U.R.	°C	7°C 85%	In-Out
Working conditions according to standard EN 14511	A35/18		
Internal circuit: radiant system	°C	23/18	In-Out
External circuit: external air 7°C with 85% U.R.	°C	35°C 50%	In-Out
Working conditions according to standard EN 14511	A35/W7		
Internal circuit: radiant system	°C	12/7	In-Out
External circuit: external air 7°C with 85% U.R.	°C	35°C 50%	In-Out

tev. 00 del 06/02/2019

Thermics Hvac high technology

Thermics is a small-medium enterprise (SME) with dedicated engineering and production teams. Internal knowhow covers thermotechnical and software abilities. Key to our success is teamwork, respect and passion for renewable technology, which make us agile company adapting the latest technologies and standard.

Heat pumps

The heat pumps produced by Thermics companies are among the most advanced and Hightech machines in the industry. Particular attention is paid to the software, which is fully designed and created within the company, developed in order to adapt to specific environments with a view to ensuring maximum performance.

Thermal solar

The technologies used in the solar heating and cooling systems provided by Thermics have been progressively consolidated over the years, and guarantee maximum efficiency and adaptability of installations.

The company owns a number of patents, and all of these meet Solar Key Mark certifications.

Innovation in ventilation

- -Mechanical ventilation units boasting high-quality engineering with thermodynamic heat recovery and inverter compressors.
- -Maximum energy efficiency in domestic and commercial ventilation environments thanks to the total modulation of fans and refrigerator circuits that enable the full energy needs of customers to be met.
- -Comprehensive air management and treatment, from renewal to air conditioning to dehumidification, for high living comfort.

Registered office:

via dell'Olmo, 37/2 33030 - Varmo (UD)- Italy P.I. 0270000306 info@thermics-energie.it **Operational headquarters:** via C. Pascoletti, 2 33040 - Povoletto (UD) - Italy

Tel. +39 0432 823600 www.thermics-energie.

